ENLACES MOTOR DE ARRANQUE

http://www.arpem.com/tecnica/arranque/arranque_p.html
http://pt.wikipedia.org/wiki/Motor_de_arranque
http://www.arranquedidactico.blogspot.com/
http://www.automecanico.com/auto2002/Arrancador.html
http://www.clubdelamar.org/arran.htm
http://www.deguate.com/autos/article_8253.shtml

SENSOR DE PRESION ABSOLUTA (MAP)

SENSOR MAP POR VARIACION DE TENSION

Como ejemplo en este caso se ha tomado un sensor de presión absoluta de un automovil Renault 19/1.8 Lts. De cualquier manera los procedimientos de ensayo para este sensor, valen practicamente para todos los Sensores MAP por Tensión de cualquier marca y modelo.
Para la comprobación de este componente utilizar un multímetro digital dispuesto para medir tensiones (voltage) de corriente continua (DC/VOLTS). Si no es un instrumento autorango, seleccionar la escala de 20 volts. -Conectar un vacuómetro al múltiple de admisión como se indica en la figura. -Conectar la punta negativa del multímetro a masa (chasis).-Poner el auto en contacto. Con la punta positiva del multímetro, medir la tensión presente en el "Pin A" de la ficha de conexión del MAP. -En este punto debe medirse una tensión de + 5 volts, esta tensión es la de alimentación del MAP, tensión que es generada por el circuito regulador de tensión del computador y que utiliza este como tensión de referencia para distintos sensores. Una vez comprobada la existencia de la alimentación de + 5 volts, pasar la punta positiva del multímetro al "Pin C" de la ficha. Este punto es masa, pero es tomada en un Pin del computador, punto que es denominado "Masa de Sensores", o tambien puede figurar en algunos diagramas de circuito eléctrico como "Masa Electrónica". En este punto debe medirse una tensión no mayor que 0,08 volts (80 milivolts). Pasar ahora la punta positiva del multímetro al "Pin B" de la ficha del MAP, por este Pin el sensor entrega la información de la presión existente en el múltiple de admisión (vacio producido por el motor en la fase de admisión de los cilindros). Como todavia no fue puesto en funcionamiento el motor, la presión en el múltiple será igual a la atmosférica. La tensión de información entregada por el MAP en estas condiciones, será de alrededor de 4 volts. Poner en funcionamiento el motor, dejarlo estabilizar.Mantener la punta positiva del multímetro en el "Pin C" del MAP (salida de información). Para un vacío de motor de 18 pulgadas Hg. (460 mm.Hg) ,la tensión a medir estará alrededor de 1,1 a 1,2 volts. Es posible efectuar otro tipo de comprobación de funcionamiento de este componente. Para realizarla, ademas del multímetro, es necesario contar con una bomba de vacio manual. Disponer el multímetro tal como se hizo en la comprobación anterior, para medir tensiones de corriente continua y elegiendo la misma escala indicada. - Conectar la punta negativa a masa y la positiva al "Pin B" de la ficha del MAP. - Desconectar la manguera de vacio de la pipeta del MAP, manguera de goma que proviene del múltiple de admisión. - Conectar en su lugar la manguera de la bomba de vacio manual. - Poner el auto en contacto.- Sin aplicar vacio, la tensión de información medida en el "Pin B" deberá ser de aproximadamente 4 volts. Este nivel de tensión es producto que el MAP está sensando el nivel de presión atmosférica. - Comenzar a continuación a producir vacio accionando la bomba manual de vacio, la tensión de información comenzará a decrecer. Cuando el vacio aplicado se encuentre a un nivel de 18 pulgadasHg (18 inchHg/460 mm.Hg), el nivel de tensión habrá descendido hasta 1,1 a 1,2 volts.

Sensor MAT

El sensor de temperatura del aire del múltiple MAT (Manifold Air Temperature) es un termistor, El sensor MAT está ubicado en el ensamble del filtro de aire, de tal manera que el ECM pueda compensar con exactitud las lecturas del flujo de aire, en base a la temperatura del aire que entra.
Este sensor convierte temperatura en señal de referencia. MAT está conectado a ECM a las terminales F16 y E5. La terminal E5 está conectada a tierra dentro de ECM para obtener una lectura más precisa. ECM por medio de la terminal F16 (cable café claro) manda un voltaje de referencia de 5 voltios de bajo amperaje regulado por una resistencia reguladora en su interior.
Al aumentar la temperatura del aire disminuye su resistencia y ECM detecta bajo voltaje por la terminal F16 modificando el funcionamiento del motor. Cuando el motor está frío la resistencia de MAT es mucha y ECM detecta alto voltaje condicionando el motor para funcionamiento en frío.


Prueba de el sensor

Para probar el sensor se mide el voltaje pero éste debe de hacerse con un voltímetro de alta impedancia, de preferencia digital.
Cuando falla el MAT genera los siguientes códigos:

Código 23.- Señal de voltaje demasiado alta (baja temperatura).
Código 25.- Señal de voltaje demasiado baja (alta temperatura).

Sensor MAF de Flujo de Aire


Ubicado entre el filtro de aire y la mariposa la función de este sensor radica en medir la corriente de aire aspirada que ingresa al motor.Su funcionamiento se basa en una resistencia conocida como hilo caliente, el cual recibe un voltaje constante siendo calentada por éste llegando a una temperatura de aproximadamente 200°C con el motor en funcionamiento.Esta resistencia se situa en la corriente de aire o en un canal de muestreo del flujo de aire.La resistencia del hilo varía al producirse un enfriamiento provocado por la circulación del aire aspirado.Actualmente se usan dos tipos de sensores MAF, los análogos que producen un voltaje variable y los digitales que entregan la salida en forma de frecuencia.Mediante la información que este sensor envía la unidad de control, y tomándose en cuenta además otros factores como son la temperatura y humedad del aire, puede determinar la cantidad de combustible necesaria para las diferentes regímenes de funcionamiento del motor. Así si el aire aspirado es de un volumen raducido la unidad de control reducirá el volumen de combustible inyectado.

Sensores de temperatura PTC y NTC


Los sensores de temperatura se aplican en varios lugares:- En el circuito del liquido refrigerante, para poder determinar la temperatura del motor a partir de la temperatura del liquido refrigerante.- en el canal de admisión para medir la temperatura del aire aspirado.- en el aceite del motor para medir la temperatura del aceite (opcional).- en el retorno del combustible para medir la temperatura del combustible (opcional).
Sensor de temperatura del motorEsta montado en el circuito del liquido refrigerante, con el fin de determinar la temperatura del motor a partir de la temperatura del liquido refrigerante, Así es posible que el control del motor se adapte exactamente a la temperatura del servicio del motor. El margen de temperaturas se sitúa en -40....+130 ºC.

Sensor de temperatura de aire
Esta montado en el conductor de admisión. Al tenerse en cuenta la temperatura del aire se admisión es posible determinar con exactitud, en combinación con un sensor de presión de sobrealimentación, la masa de aire de aspirada. Ademas de ello se pueden adaptar los valores teóricos para los circuitos reguladores a la temperatura del aire (como ejemplo: retroalimentación de gases de escape, regulación de la presión de sobrealimentación). El margen de temperaturas se sitúa en -40ºC.......+120 ºC.
Sensor de temperatura del aceite del motorLa señal del sensor de temperatura del aceite del motor se emplea para calcular los intervalos de servicio. El margen de temperaturas se sitúa en -40 .....+170 ºC.

Sensor de temperatura del combustible
Este esta montado en la parte de baja presión. Al tenerse en cuenta la temperatura del combustible se puede calcular con exactitud que caudal de combustible se necesita. El margen de temperaturas se sitúa en -40......+120 ºC.


Estructura y funcionamiento

Los sensores de temperatura se ofrecen en diversas formas constructivas, según el campo de aplicación previsto. En un cuerpo esta montada una resistencia de medición dependiente de la temperatura. Esta cuenta con un coeficiente de temperatura negativo o positivo (NTC: Negative Temperature Coeficient; PTC: Positive Temperature Coeficient); o sea que su resistencia eléctrica disminuye o aumenta al subir la temperatura.La resistencia de medición forma parte de un circuito divisor de tensión que es abastecido con 5 V. La tensión que se mide en esta resistencia es, por tanto; dependiente de la temperatura. La misma se inscribe en un convertidor analogico-digital y representa una medida de la temperatura en el sensor. En la unidad de control del motor esta almacenada en memoria una curva característica que indica la temperatura correspondiente a cada valor de tensión.

Sensores del pedal del acelerador


En el moderno control electrónico del motor, el deseo del conductor (por ejemplo: aceleración, marcha constante, deceleración, etc.) ya no se comunica mas al control del motor a través de un cable de tracción o varillaje. Un sensor del pedal acelerador (llamado también transmisor del valor del pedal, PWG) detecta la posición del pedal y la transmite a la unidad de control.
Estructura y funcionamientoEl componente esencial es un potenciometro (resistencia eléctrica variable). Dependiendo de la posición del pedal acelerador surge en este una tensión. Conforme a una linea característica programada en la unidad de control se calcula la posición del pedal acelerador a partir de esta tensión. Para fines de diagnostico y en su caso para la representación de una función sustitutiva se tiene integrado un redundante (doble). Se diferencia entre dos versionesConmutador de ralentí y kickdownEl conmutador de ralentí cambia su estado, en caso de recorridos pequeños del pedal, de "señal de margen de ralentí" a "señal de margen de plena carga". Para los vehículos con cambio automático es posible, en esta variante, que un conmutador adicional genere una señal kickdown.
Segundo potenciómetroUn segundo potenciometro redundante suministra en todos los puntos de servicio siempre la media tensión del primer potenciometroLos sensores de pedal acelerador se montan como sensores individuales o como módulos completos. En el caso de modelos no se requieren, en el vehículo, trabajos de ajuste entre la posición del pedal y el sensor.

Sensor de impacto

Los sensores de impacto deben ser capaces de detectar una colisión y convertirla en los impulsos correspondientes en un lapso de tan sólo unos pocos milisegundos. Las fuerzas de aceleración que actúan sobre los sensores inmediatamente después de una colisión pueden llegar a alcanzar 100 g (100 veces la fuerza gravitatoria terrestre).

Generalmente, el principio de medición aplicado por los sensores de impacto se basa en el efecto de inercia. Cuando un vehículo es detenido bruscamente a causa de un impacto, todos los cuerpos u objetos que no estén firmemente sujetos al vehículo continuarán moviéndose a la velocidad en el momento del impacto.

Sensor de oxigeno o sonda landa


Para hablar del sensor de oxigeno debemos primero conocer algunos términos para comprender su función y funcionamiento.
Estequiometría: “Es la parte de la química que trata sobre las relaciones cuantitativas entre compuestos y/o elementos en reacciones químicas”
Los motores que utilizan gasolina como combustible mantienen un equilibrio entre entrega de potencia y generación de gases contaminantes, cuando funcionan con una mezcla estequiométrica de14.7:1; 14.7 partes de aire por una parte de combustible.
Relación de mezcla = Peso del combustible / Peso del aire
-Expresado en masa: 14.7 Kg. de aire por 1Kg. de combustible.-Expresado en volumen: 10.000 Litros de aire por 1 Litro de combustible.
Teóricamente es la cantidad de aire y combustible requerida para una combustión completa, y es, en este punto en donde el catalizador se desempeña en forma optima.
A la proporción 14.7:1 se le denomina LAMBDA 1
Lambda: Es el Índice de relación de aire, expresa en que punto se encuentra la mezcla en proporción al aire disponible para la combustión, con respecto al aire teórico necesario para una combustión completa.
LAMBDA = masa de aire proporcionado / masa de aire necesaria
Si la cantidad de aire proporcionado, es igual a la cantidad de aire necesario, obtendremos un valor de lambda = 1 (14.7:1)De esta manera, obtener una lectura de lambda 1.10 (16.17:1) nos expresa un 10% de exceso de aire, un Lambda de 0.90 (13.23:1) expresa un 10% de exceso de combustible.
Lambda mayor a 1 = mezcla pobre.Lambda menor a 1 = mezcla rica.


La unidad de control electrónico (E.C.U.) del motor recibe y procesa de diversos sensores información cada 0.02 Seg. Igual de rápida es su respuesta para emitir ordenes a los actuadores. (inyectores, avance de la ignición, entre otros).
La E.C.U. calcula la cantidad de combustible a suministrar dependiendo de la cantidad y densidad del aire admitido a los cilindros, en el momento preciso salta la chispa entre los electrodos de la bujía iniciando así, la combustión de la mezcla; la expansión de gases obliga al pistón a desplazarse desde el punto muerto superior hasta el punto muerto inferior produciendo trabajo mecánico, al subir el pistón nuevamente, los gases son desalojados del cilindro a través de las válvulas de escape, una vez que estos gases se encuentran en el colector o en el tubo de escape el sensor de Oxigeno verifica el nivel de O2 de los gases producto de la combustión.


Funcionamiento de la sonda Lambda.


Esta basado en el principio de funcionamiento de una célula galvanica de concentración de oxigeno con un electrolito sólido.
El electrolito sólido esta formado por un compuesto cerámico de Dióxido de Zirconio estabilizado con oxido de Itrio, dicha estructura es impenetrable por los gases, la capa cerámica esta cerrada por un extremo, por el otro extremo esta en contacto con la atmósfera (aire exterior) como referencia, ambos extremos del cuerpo cerámico están provistos en su parte interna de electrodos que poseen una fina capa de platino permeable a los gases, un tubo cerrado por un extremo y ranurado por los laterales que protege al cuerpo cerámico de golpes y cambios bruscos de temperatura.
El cuerpo cerámico es permeable a los Iones de O2 a partir de aproximadamente 350° C, con temperaturas de trabajo de 600° C , esta es la razón por la cual las sondas lambda están siendo provistas de sistemas calentadores (resistencias eléctricas) para que la sonda entre en funcionamiento (envíe señal a la E.C.U) cuando el motor aun, no ha alcanzado su temperatura normal de funcionamiento.
El contenido de O2 en los gases de escape en relación con el aire de referencia producen una tensión eléctrica entre ambas superficies.Esta tensión puede ser, con una mezcla rica (lambda <1)>1), la tensión estaría en valores de 100 mV (0.01 Voltios).El margen de transición entre mezcla rica y pobre, esta entre 450 y 500 mV (0.45 a 0.50 Voltios).

SENSORES


Un sensor es un dispositivo capaz de transformar magnitudes físicas o químicas, llamadas variables de instrumentación, en magnitudes eléctricas. Las variables de instrumentación dependen del tipo de sensor y pueden ser por ejemplo temperatura, intensidad luminosa, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, torsión, humedad, pH, etc. Una magnitud eléctrica obtenida puede ser una resistencia eléctrica (como en una RTD), una capacidad eléctrica (como en un sensor de humedad), una tension eléctrica (como en un termopar), una corriente eléctrica (como un fototransistor), etc.
Un sensor se diferencia de un transductor en que el sensor está siempre en contacto con la variable a medir o a controlar. Recordando que la señal que nos entrega el sensor no solo sirve para medir la variable, si no también para convertirla mediante circuitos electrónicos en una señal estándar (4 a 20 mA, o 1 a 5VDC) para tener una relación lineal con los cambios de la variable sensada dentro de un rango (span), para fines de control de dicha variable en un proceso.

Puede decirse también que es un dispositivo que aprovecha una de sus propiedades con el fin de adaptar la señal que mide para que la pueda interpretar otro dispositivo. Como por ejemplo el termómetro de mercurio que aprovecha la propiedad que posee el mercurio de dilatarse o contraerse por la acción de la temperatura. Un sensor también puede decirse que es un dispositivo que convierte una forma de energía en otra. Áreas de aplicación de los sensores: Industria automotriz, Industria aeroespacial, Medicina , Industria de manufactura, Robótica , etc.

Punta logica


Esta herramienta es sumamente útil para aquellos que trabajan en el desarrollo o reparación de circuitos de lógica TTL.
La punta lógica se alimenta de la misma fuente de tensión del circuito bajo examen, conectandose el terminal cocodrilo (-) a la masa y el terminal cocodrilo (+) al positivo de 5 voltios.

El funcionamiento es muy rudimentario y gira entorno a un transistor NPN que actúa como conmutador y tres compuertas inversoras.


Hay solo tres posibles estados que puedan hacerse presentes en la punta (marcada como Pta.).


  • Estado Bajo:En ese caso sobre la base del transistor no habrá tensión por lo que no conducirá y hará que en la entrada de la compuerta inferior (terminal 5) haya un estado lógico bajo, presentando esta compuerta el valor opuesto en su salida (estado alto). Esto impedirá que el LED brille de color rojo. Volviendo a la punta (cuyo estado estaba en bajo), la entrada de la compuerta superior izquierda (terminal 1) presentara también un estado lógico bajo, haciendo presente en su salida (terminal 2) un estado alto. Este estado hace que, a la salida de la segunda compuerta superior (terminal 4) haya un estado bajo, lo cual probocará que el LED bicolor brille de color verde, indicando un estado BAJO.

  • Estado Alto:Si en la punta se presenta un estado TTL alto la base del transistor se polarizará y este componente entrará en conducción por lo que en la entrada de la compuerta inferior habrá un estado lógico alto, lo que probocará un estado bajo a su salida y hará que el LED ahora brille de Colorado. Como en la punta hay un estado alto, a la salida de la primera compuerta superior habrá un estado bajo, haciendo que la salida de la segunda compuerta sea alta. Esto impedirá que el LED verde ilumine.

  • Estado de alta impedancia (sin conexión):Si, en cambio, dejamos la punta sin conectar a ningún lado la base del transistor no se polarizará, por lo que (siguiendo el caso de estado bajo) el LED rojo no brillará. Pero, como para las compuertas de lógica TTL un estado de alta impedancia o desconexión es visto como un estado ALTO, la salida de la compuerta superior izquierda será BAJA, por lo que la salida de la segunda compuerta será alta y tampoco brillará el LED verde. Esto hace que, cuando la punta esta sin conexión el LED no brille de ningún color.

Dada la sencillez del circuito se lo puede montar al aire, dentro de un tubo plástico pequeño y luego se lo puede rellenar con plástico fundido. También se lo puede armar sobre un circuito impreso universal. Para los bornes positivo y negativo es recomendable utilizar pinzas de cocodrilo y, para la entrada de señal una punta de tester o similar.

Alarma temporizada


SISTEMA DE ENCENDIDO




Su función consiste en generar en las bujías la chispa necesaria para la ignición de la mezcla dentro de los cilindros en el orden adecuado de funcionamiento.
En los sistemas de encendido denominados básicos (denominados también como encendido por batería) podemos encontrar la llave de contacto, bobina, ruptor, el condensador, distribuidor, bujias.
  • La llave de contacto es la encargada de permitirle al conductor encender el vehículo mediante al cerrar el circuito eléctrico de encendido al girar la llave, alimentando con la batería el circuito primario y motor de arranque.

  • La bobina es la encargada de lograr una corriente de alta tensión para las bujías con la corriente que le llega de las baterías, ya que las bujías necesitan tensiones en el entorno de los 25000 volts para una correcta ignición de la mezcla.

  • El ruptor, conocido también como platino, interrumpe la corriente en la bobina y provoca el aumento de tensión.Esta constituído básicamente por un contacto el martillo, contacto móvil que se encarga de recibir la corriente procedente de la bobina y el yunque en donde se hace masa.

  • El condensador que es quien abserve la chispa resultante en los contactos del ruptor durante la apertura evitando que éstos se quemen, además de reducir el lapso de tiempo del corte de la corriente en la bobina contribuyendo así también a subir el voltaje.

  • El distribuidor reparte la corriente a las bujías en el orden que éstas la necesitan para generar la chispa.

  • Las bujías situadas en el interior de los cilindros y que es donde finalmente se genera la chispa necesaria para la ignición de la mezcla.

  • En los sistemas de encendido transitorizados también encontramos un transistor situado entre la bobina y el ruptor que tiene como objetivo dividir la corriente de la batería en una de baja tensión para el ruptor y otra mayor para la masa de la bobina.La acción de este transitor tiene grandes ventajas como un menor consumo, mayor vida de los contacto del ruptor, mejor potencia de la chispa, y se puede prescindir del condensador para el ruptor.

  • Finalmente tenemos los sistemas que no poseen ruptor sino que llevan un elemento electrónico que se encarga de controlar la ruptura y tiempo de alimentación de la bobina, por lo que se denominan a éstos sistemas como encendido electrónico.Entre sus mejores prestaciones encontramos que el motor puede ser puesto en marcha en frío con una mejor facilidad que en los anteriores sistemas, un mejor funcionamiento tanto en ralenti como en altas revoluciones y un menor consumo de combustible y batería.

HISTORIA DE EL TRANSISTOR

Las primeras tres patentes para un transistor de efecto de campo fueron registradas en Alemania en 1928 por el físico Juluis Edgar Lilienfeld.
Lilienfeld jamás publico sus dispositivos y por lo tanto fue ignorado por la industria.
En 1934 el físco aleman Dr. Oskar Heil patento otro transistor de efecto de campo, pero sin evidencia de que haya fabricado dichos dispositivos.
El 16 de diciembre de 1947,, William Shockley, John Bardeen y Walter Brattain contruyeron el primer transistor de contactor (metal-semiconductor) en los laboratorios Bell.
Utilizo Germanio puro para un mezclador de señales a utilizarse en los radares desarrollados en la segunda guerra mundial.




Shockley, Bardeen, y Brattain ganaron el Premio Nobel de Física en 1956 por [sus investigaciones en semiconductores y su descubrimiento del efecto de campo”
Bardeen ganó un segundo premio Nobel por sus investigaciones en superconductividad.

TRANSISTOR POTENCIA

El funcionamiento y utilización de los transistores de potencia es idéntico al de los transistores normales, teniendo como características especiales las altas tensiones e intensidades que tienen que soportar y, por tanto, las altas potencias a disipar.
Existen tres tipos de transistores de potencia:
  • bipolar.

  • unipolar o FET (Transistor de Efecto de Campo).
  • IGBT.

El IGBT ofrece a los usuarios las ventajas de entrada MOS, más la capacidad de carga en corriente de los transistores bipolares:

  • Trabaja con tensión.
  • Tiempos de conmutación bajos.
  • Disipación mucho mayor (como los bipolares).

Nos interesa que el transistor se parezca, lo más posible, a un elemento ideal:

  • Pequeñas fugas.
  • Alta potencia.
  • Bajos tiempos de respuesta (ton , toff), para conseguir una alta frecuencia de funcionamiento.
  • Alta concentración de intensidad por unidad de superficie del semiconductor.
  • Que el efecto avalancha se produzca a un valor elevado ( VCE máxima elevada).
  • Que no se produzcan puntos calientes (grandes di/dt ). Una limitación importante de todos los dispositivos de potencia y concretamente de los transistores bipolares, es que el paso de bloqueo a conducción y viceversa no se hace instantáneamente, sino que siempre hay un retardo (ton , toff). Las causas fundamentales de estos retardos son las capacidades asociadas a las uniones colector - base y base - emisor y los tiempos de difusión y recombinación de los portadores.

La diferencia entre un transistor bipolar y un transistor unipolar o FET es el modo de actuación sobre el terminal de control. En el transistor bipolar hay que inyectar una corriente de base para regular la corriente de colector, mientras que en el FET el control se hace mediante la aplicación de una tensión entre puerta y fuente. Esta diferencia vienen determinada por la estructura interna de ambos dispositivos, que son substancialmente distintas.
Es una característica común, sin embargo, el hecho de que la potencia que consume el terminal de control (base o puerta) es siempre más pequeña que la potencia manejada en los otros dos terminales.

TRANSISTOR DARLINGTON

El transistor Darlington es un tipo especial de transistor que tiene una alta ganancia de corriente.
Está compuesto internamente por dos
transistores bipolares que se conectan es cascada.



El transistor T1 entrega la corriente que sale por su emisor a la base del transistor T2.

La ecuación de ganancia de un transistor típico es:
IE= β x IB (Corriente de colector es igual a beta por la corriente de base).

Como se puede deducir, este

amplificador tiene una ganancia mucho mayor que la de un transistor corriente, pues aprovecha la ganancia de los dos transistores. ( la ganancias se multiplican).
Si se tuvieran dos transistores con ganancia 100 (β = 100) conectados como un transistor Darlington y se utilizara la fórmula anterior, la ganancia sería, en teoría: β2 x β1 = 100 x 100 = 10000. Como se ve es una ganancia muy grande. En la realidad la ganancia es menor.

Se utilizan ampliamente en circuitos en donde es necesario controlar cargas grandes con corrientes muy pequeñas.
Muy importante:La caída de
tensión entre la base y el emisor del transistor Darlington es 1.4 voltios que resulta de la suma de las caídas de tensión de base a emisor del primer transistor B1 a E1 (0.7 voltios) y base a emisor del segundo transistor B2 y E2 (0.7 voltios).


EL TRANSISTOR BIPOLAR

Un transistor bipolar está formado por dos uniones pn en contraposición. Físicamente, el transistor está consitutído por tres regiones semiconductoras denominadas emisor, base y colector. Existen 2 tipos de transistores bipolares, los denominados NPN y PNP:



Transistores Bipolares npn y pnp.
A partir de este punto nos centramos en el estudio de los transistores bipolares NPN, siendo el comportamiento de los transistores PNP totalmente análgolo.
El emisor en un transistor NPN es la zona semiconductora más fuertemente dopada con donadores de electrones, siendo su ancho intermedio entre el de la base y el colector. Su función es la de emitir electrones a la base. La base es la zona más estrecha y se encuentra débilmente dopada con aceptores de electrones. El colector es la zona más ancha, y se encuentra dopado con donadores de electrones en cantidad intermedia entre el emisor y la base.

Condiciones de funcionamiento
Las condiciones normales de funcionamiento de un transistor NPN se dan cuando el diodo B-E se encuentra polarizado en directa y el diodo B-C se encuentra polarizado en inversa. En esta situación gran parte de los electrones que fluyen del emisor a la base consiguen atravesar ésta, debido a su poco grosor y débil dopado, y llegar al colector.
El transistor posee tres zonas de funcionamiento:

Zona de saturación: El diodo colector está polarizado directamente y es transistor se comporta como una pequeña resistencia. En esta zona un aumento adicionar de la corriente de base no provoca un aumento de la corriente de colector, ésta depende exclusivamente de la tensión entre emisor y colector. El transistor se asemeja en su circuito emisor-colector a un interruptor cerrado.
  • Zona activa: En este intervalo el transistor se comporta como una fuente de corriente , determinada por la corriente de base. A pequeños aumentos de la corriente de base corresponden grandes aumentos de la corriente de colector, de forma casi independiente de la tension entre emisor y colector. Para trabajar en esta zona el diodo B-E ha de estar polarizado en directa, mientra que el diodo B-C, ha de estar polarizado en inversa.
  • Zona de corte: El hecho de hacer nula la corriente de base, es equivalente a mantener el circuito base emisor abierto, en estas circunstancias la corriente de colector es prácticamente nula y por ello se puede considerar el transistor en su circuito C-E como un interruptor abierto.
    Los transistores se usan en su zona activa cuando se emplean como amplificadores de señales. Las zonas de corte y saturación son útiles en circuítos digitales.
  • FUNCIONAMIENTO DE EL TRANSISTOR

    Suponiendo una coneccion apropiada se puede decir que :
    • Cuando el interruptor SW1 está abierto no circula intensidad por la Base del transistor por lo que la lámpara no se encenderá, ya que, toda la tensión se encuentra entre Colector y Emisor.

    • Cuando se cierra el interruptor SW1, una intensidad muy pequeña circulará por la Base. Así el transistor disminuirá su resistencia entre Colector y Emisor por lo que pasará una intensidad muy grande, haciendo que se encienda la lámpara.

    TRANSISTOR

    Sería imposible entender la evolución de la electrónica digital en general, y de la informáctica en particular sin una buena comprensión de lo que es, y lo que ha aportado el transistor a estas ciencias.



    >>TUBO DE VACIO >>>>>>>>> >transistores

    El transistor vino a reemplazar a un dispositivo denominado tubo de vacío (los tubos de vacío aún se emplean en electrónica de potencia, cuando son necesarías elevadísimas ganancias, por ejemplo en amplificadores para trasmisión vía satélite) con las siguientes ventajas:

    • Su consumo de corriente es mucho menor con lo que también es menor su producción de calor.
    • Su tamaño es también mucho menor. Un transistor puede tener el tamaño de una lenteja mientras que un tubo de vacío tiene un tamaño mayor que el de un cartucho de escopeta de caza. Esto permite una drástica reducción de tamaño.
    • Mientras que las tensiones de alimentación de los tubos estaban alrededor de los 300 voltios las de los transistores vienen a ser de 10 voltios con lo que los demás elementos de circuito también pueden ser de menor tamaño al tener que disipar mucho menos calor y soportar tensiones mucho menores.
    • Un transistor es un dispositivo que controla el flujo de una señal por medio de una segunda señal de mucho menor intensidad. La señal de control puede ser una señal de corriente o voltaje.
    • Los transistores son uno de los inventos mas relevantes del siglo pasado.
    • Son componentes básicos de practicamente toda la electrónica moderna.
    • Su bajo costo, flexibilidad y confiabilidad los ha vuelto indispensables para aplicaciones no mecanicas.
    El transistor es un elemento constituido fundamentalmente por silicio o germanio. Su vida media es prácticamente ilimitada y en cualquier caso muy superior a la del tubo de vacío.

    Como podemos ver el simple hecho de pasar del tubo de vacío al transistor supone un gran paso en cuanto a reducción de tamaño y consumo y aumento de fiabilidad.



    SIMBOLO DE EL TRANSISTOR

    DIODOS

    El diodo es el dispositivo semiconductor más sencillo y se puede encontrar, prácticamente en cualquier circuito electrónico.
    Los diodos se fabrican en versiones de silicio (la más utilizada) y de germanio.



    Símbolo del diodo ( A - ánodo, K - cátodo)

    Principio de operación de un diodo
    Diodo semiconductor permite el flujo de corriente en un solo sentido. Los electrones del material tipo n pueden fluir hacia la izquierda, atravesando el material tipo p, pero la falta de un exceso de electrones en el material tipo p impedirá cualquier flujo de electrones hacia la derecha. Obsérvese que se define que la corriente fluye en un sentido opuesto al del flujo de los electrones.

    El semiconductor tipo N tiene electrones libres (exceso de electrones) y el semiconductor tipo P tiene huecos libres (ausencia o falta de electrones)
    Cuando una tensión
    positiva se aplica al lado P y una negativa al lado N, los electrones en el lado N son empujados al lado P y los electrones fluyen a través del material P mas allá de los límites del semiconductor.De igual manera los huecos en el material P son empujados con una tensión negativa al lado del material N y los huecos fluyen a través del material N.
    En el caso opuesto, cuando una tensión positiva se aplica al lado N y una negativa al lado P, los electrones en el lado N son empujados al lado N y los huecos del lado P son empujados al lado P. En este caso los electrones en el semiconductor no se mueven y en consecuencia no hay
    corriente
    El diodo se puede hacer trabajar de 2 maneras diferentes:


    Polarización directa


    Es cuando la corriente que circula por el diodo sigue la ruta de la flecha (la del diodo), o sea del ánodo al cátodo. En este caso la corriente atraviesa el diodo con mucha facilidad comportándose prácticamente como un corto circuito.



    Polarización inversa


    Es cuando la corriente en el diodo desea circular en sentido opuesto a la flecha (la flecha del diodo), o se del cátodo al ánodo. En este caso la corriente no atraviesa el diodo, y se comporta prácticamente como un circuito abierto.